

1 Material compatibility

Assess the properties of your material—such as flow characteristics, abrasiveness, and reactivity-to determine the best design and accessories for the unloader.

- Abrasion
- Corrosion
- Hygroscopicity **Chemical reactivity**
- Temperature sensitivity
- Dust containment
- Bulk density
- Flowability
- Sanitary/food grade Static/conductivity
- Agglomerates

7 Dust control and containment

Depending on the material and bag type, consider dust extraction features such as manifolds, rubber skirts, or spout clamps.

	Seals & connections
٦	Dust collection systems
Ē	Enclosed discharge area
	Dust-tight bag removal
	Dust containment enclosures
	Negative pressure systems
	Containment during changeover
	Local exhaust ventilation (LEV)

8 Safety features

Prioritise operator safety with ergonomic loading heights, safety interlocks, and other protective design elements.

	Structural safety
	Hoist & lifting safety
	Guarding & access controls
	Emergency stop mechanisms
	Hazardous material safety
]	Ergonomics & operator safety
	Safety monitoring
	Noise control
	Manual override systems

9 Ease of use / Maintenance

Look for accessible designs that simplify cleaning, operation, and bag changeovers.

User-friendly operation		
Quick setup & bag attachment		
Maintenance accessibility		
Automated cleaning systems		
Minimal wear parts		
Diagnostic & monitoring tools		
Maintenance free components		
Operator training		

10 Material waste-reduction strategies

Options like massage paddles or pneumatic bag agitation can help ensure complete emptying of bags, reducing waste.

Residual material recovery Bridging and flow aids Efficient bag changeovers Material-specific adjustments Cleaning and recovery Waste auditing & tracking

11 Energy efficiency

Review power requirements and the energy efficiency of the unloader and any ancilliary systems.

Motor & drive systems Power management Energy-efficient pneumatics Heat recovery & insulation Smart sensor technology **Operational efficiency** Lighting & ancillary systems Energy usage audits

12 Compliance

Ensure that the unloader complies with relevant safety, hygiene, and regulatory standards for your industry.

- Safety & occupational health Electrical safety Dust control & combustible dust Lifting & handling Environmental Food, pharmaceutical & hygienic Chemical & corrosion resistance **Explosion protection** Risk management & assessment
- **Documentation & certification**

2 Capacity requirements Plan for both current and future production needs to ensure your bag

Bag size & weight capacity Hopper & storage capacity Lifting & hoisting mechanisms unloader can manage anticipated Discharge aids Conveying equipment capacity

3 Batching or dosing

production rates.

If precise dispensing is required, consider options like load cells or specialised feeding systems.

- **Batching accuracy**
- Flow control mechanisms Batch size requirements
- Automation & controls
- Batching speed vs accuracy
- Existing system integration
- **Batch verification**
- Multiple material dosing Spill & contamination prevention

Cycle time & process throughput

Multiple bag handling Safety considerations

Future capacity needs

4 Bag handling requirements

Evaluate how bags will be loaded and whether the unloader needs to accommodate various bag sizes or types.

- **Bag loading mechanisms** Bag clamping & securing
- Bag liner handling
- Spout types & connection
- Discharge control
- Bag emptying aids Bag construction

5 System flexibility & integration

Consider how your new bulk bag unloader will function with existing equipment as well as future production scalability.

Bag compatibility Modular design & scalability

Integration with other systems Adjustability (height/frame) Space & layout considerations Adaptability for future needs

6 Discharge and throughput rates

Identify the speed required for emptying bags and transferring material to meet your production targets.

Discharge rate requirements Hopper and feed mechanisms Continuous / intermittent flow Surge capacity and buffering